化學軟體‎ > ‎量子化學‎ > ‎

Khimera

張貼者:2010年6月11日 下午1:28service orderble   [ eddie liu 已於 2011年5月10日 下午8:11 更新 ]
Khimera allows one to calculate the kinetic parameters of elementary processes and thermodynamic and transport properties from the data on the molecular structures and properties obtained from quantum-chemical calculations or from an experiment. The molecular properties and the parameters of molecular interactions can be calculated using available quantum-chemical software (GAUSSIAN, GAMESS, JAGUAR, ADF) and directly inputted into Khimera in an automatic mode. These parameters also can be inputted from the database integrated into Chemical Workbench and Khimera packages. Results can be presented visually and exported for the further use in kinetic modeling and CFD packages.Khimera 幫助工作在燃燒、等離子體化學和材料科學等領域的科研工作者應用量子電子學和量子化學軟件來進行原子模擬的工具。 Khimera是研究和分析化學過程的軟件包,它簡便反應機理髮展,從基本的分子數據中估測熱力學、傳送和動力學參數,進行反應器水平的模擬。











主要特點:
  • 動力學機理建模包括敏感度分析和自動的機制縮減能力;
  • 使用多種現代理論方法來計算基本的單分子和雙分子反應的速率常數;
  • 直接從著名的量子化學代碼Gaussian, ADF, Jaguar,GAMESS 的輸出文件中導入數據;
  • 含有大量物質、反應和化學機理的動力學和熱力學參數的數據庫;
  • 一系列的反應器模塊可以模擬所有的反應過程,並且可以證明/分析反應機理。
  • Khimera包含一個準-3D分子察看器,以圖形方式顯示計算結果。 Khimera有文件導入/導出的能力,可以方便的應用在各種反應機理研究和動力學分析中。 現在還有超文本的幫助功能。
---------------------------------------------------
開發商:Kintech
更新日期:2011/05/11
採購正式版、大量授權報價、技術支援、軟體諮詢、委託採購、詢問報價請來電 02-29299388 分機16 , 
來信service@orderble.com,或點我
------------------------------------------------------------------------------




功能:
基本反應的熱動力學和運動學
Khimera 可識別量子化學計算的結果(目前支持Gaussian, GAMESS和Jaguar程序),這些計算結果都是關於基本的氣-氣和氣-液反應,而這些反應都包含所研究化學過程的(假設)機理。 這些結果(能量,頻率,以及反應物,過渡態和最終產品的結構)被用來計算焓值,熵值和單個反應的速率。

1. 過渡態理論和直接生物分子反應;
2. 帶有或不帶有強碰撞假設的單分子RRKM模型;
3. 經歷長壽命中間體絡合物的分子氣相反應模型;
4. 基於普遍過渡態理論和統計理論,並考慮到表面擴散的微觀表面動力學模型;
5. 同時依據Langevin方法和統計理論的離子-分子反應模型;
6. 反應速率參數和熱動力性質的計算結果將被輸出為CHEMKIN輸入格式,以便進一步利用動力學軟件包進行分析。

反應器模型
1. 對化學機理進行敏感分析的反應器模型(Calorimetric Bomb Reactor, Plug-Flow Reactor和Well Stirred Reactor),應用於氣相化學和表面化學;
2. 基於活性點的異相化學模擬反應器模型(Calorimetric Bomb Reactor, ALD Reactor, Well Stirred Reactor和Plug-Flow Reactor);
3. 基於Monte Carlo方法的異相化學模擬反應器;
4. 理想異相熱動力平衡的反應器模型

操作平台:Linux /Unix

Khimera®

Khimera is used to calculate the kinetic parameters of microscopic processes, thermodynamic and transport properties of substances and their mixtures in gases, plasmas and also of heterogeneous processes.  Essential feature of Khimera is user-friendly interface for importing and utilizing the results of quantum-chemical calculations for estimating rate constants of elementary processes and thermodynamic and transport properties. 

In combination with Chemical Workbench Khimera can be used efficiently for the developemnt of the of the predictive physical and chemical mechanisms and their validation. Kinetic (reaction) mechaism developemnt is a  key stage of present-day technologies for the creation of hi-tech devices and processes in a wide range of fields, such as microelectronics, chemical industry, and the design and optimization of combustion engines and power stations. Khimera is capable significantly facilitate the development of kinetic mechanisms providing reliable first principal based data in the case of the absence of the experimental data and can decrease dramatically the amount of the experimental work required.

Khimera is a product of cooperation between "Kintech Lab" and MOTOROLA Digital DNA Lab (now FreescaleTM).  There are no commercial analogous available.

Fields of Application

Khimera incorporates recent achievements in the development of numerical algorithms for a wide range of models of elementary physicochemical processes; these models are of particular importance for hi-tech applications in microelectronics, materials science, chemical industry, automobile and aviation industry, and power engineering. Learn more about Khimera applications.

Basic Possibilities

The computation modules of Khimera allow one to calculate the kinetic parameters of elementary processes and thermodynamic and transport properties from the data on the molecular structures and properties obtained from quantum-chemical calculations or from an experiment. The molecular properties and the parameters of molecular interactions can be calculated using available quantum-chemical software (GAUSSIAN, GAMESS, JAGUAR, ADF) and directly inputted into Khimera in an automatic mode. These parameters also can be inputted from the database integrated into Chemical Workbench and Khimera packages. The results of calculations can be presented visually and exported for the further use in kinetic modeling and CFD packages.

Khimera allows one to calculate the kinetic parameters of elementary processes and thermodynamic and transport properties from the data on the molecular structures and properties obtained from quantum-chemical calculations or from an experiment. The molecular properties and the parameters of molecular interactions can be calculated using available quantum-chemical software (GAUSSIAN, GAMESS, JAGUAR, ADF) and directly inputted into Khimera in an automatic mode. These parameters also can be inputted from the database integrated into Chemical Workbench and Khimera packages. Results can be presented visually and exported for the further use in kinetic modeling and CFD packages.

Khimera constructs process mechanisms

Khimera and Chemical WorkBench form an integrated environment for the development of kinetic mechanisms of complex physical and chemical processes. Khimera provides a unique possibility for estimating microscopic kinetic, transport, and thermodynamic parameters of hypothetical gas-phase, heterogeneous, and plasma mechanisms. Reactor models of Chemical Workbench (including sensitivity analysis) allow the validation of the developed gas-phase, plasma, and heterogeneous nanochemical mechanisms based on the available macroscopic experimental data. Mechanism development in Khimera and Chemcal WorkBench is based on quantum-chemical data, which offers a possibility of developing kinetic mechanisms, to a certain extent, irrespectively of the experiment, so that modeling becomes predictive and significantly reduces the volume of experimental studies necessary for the mechanism development.


Khimera and Chemical WorkBench form an integrated environment for the development of kinetic mechanisms of complex physical and chemical processes. Khimera provides a unique possibility for estimating microscopic kinetic, transport, and thermodynamic parameters of hypothetical gas-phase, heterogeneous, and plasma mechanisms.


Khimera Key Features

Khimera Capabilities:
  • Calculations of rate constants for a wide range of elementary reactions using a variety of present-day theoretical methods
  • Molecular data are imported directly from output files of popular Quantum Chemistry codes, including Gaussian, Jaguar, GAMESS
  • Integrated Database of kinetic and thermodynamic parameters for a great number of substances, reactions, and chemical mechanisms
  • Postprocessing module and program interface to Chemical Workbench for kinetic mechanism testing and validation.
Khimera Allows to Calculate:

Thermodynamic properties of gas-phase substances:

  • Heat capacity
  • Enthalpy of formation
  • Entropy

Transport properties of multicomponent gas mixtures:

  • Heat conductivity
  • Viscosity
  • Diffusion coefficients

Rate constants of elementary processes:

  • Thermal chemical reactions in the gas phase
  • Heterogeneous reactions at the gas–surface interface
  • Vibrational and electronic energy exchange in gases
  • Photoexcitation and photodissociation processes
  • Plasma chemical processes involving electrons
  • Ion-molecular reactions

Khimera Models

Khimera implements a wide range of first-principls-based models for calculating thermodynamic properties and kinetic and transport characteristics:

Chemistry of Heavy Particles

Direct bimolecular reactions
Bimolecular reactions via long-lived intermediate complexes
Multi-channel unimolecular reactions
Dissociation of diatomic molecules
Ion-molecular reactions

Surface Processes

Gas-surface reactions
Surface reactions
Surface diffusion

Electron-Molecular Reaction

Elastic electron-molecule scattering
Electronic excitation by electron impact
Ionization by electron impact
Electron-ion recombination

Vibrational Energy Transfer

VT and VV energy exchange
VRT and VVR energy exchange

Photochemical Reactions and Electronic Energy Transfer

Photoexcitation of diatomic molecules
Photodissociation of diatomic molecules
Dissociative electronic energy transfer
Predissociation of diatomic molecules
Inelastic atomic collisions

Multicomponent Thermodynamic Properties Model
Multicomponent Gas Transport Properties Model

The viscosity, thermal conductivity, diffusion and thermodiffusion properties of dissociated gas mixtures are calculated based on the model or ab initio interaction potentials within the Chapman-Enskog method.




Comments