製造業‎ > ‎電腦輔助設計‎ > ‎

LASCAD

張貼者:2010年10月2日 下午11:46未知的使用者   [ service orderble 已於 2011年5月26日 上午7:41 更新 ]
LASCAD LogoLASCAD是由德國LAS-CAD GmbH公司開發的激光器設計軟件。 具有易用和友好的人機界面,可以對激光器諧振腔進行建模和優化。 光學元件諸如光學鏡片、透鏡或晶體可以用鼠標來進行添加、移動、刪除等操作。 可以對諧振腔和晶體的象散進行自動分析。 可進行有限元分析、ABCD矩陣高斯光束傳輸分析及物理光學傳輸分析,併計算激光器的穩區和效率。





開發商:LAS-CAD GmbH
原廠網址:http://www.las-cad.com/
更新日期:2011/05/26
採購正式版、大量授權報價、技術支援、軟體諮詢、委託採購、詢問報價請來電 02-29299388 分機16 , 
來信service@orderble.com,或點我
-----------------------------------------------------------------------------




LASCAD -在PC上的光學工作台

易於使用和顯然是有組織 的用戶界面 的 LASCAD 許可證直觀的建模和設計的激光腔。 它幫助工程師理解實驗結果,但不浪費寶貴的時間去學習複雜的手冊:
  • 光學元件如鏡,透鏡或晶體可以添加,組合,定位,調整或取消用鼠標點擊。
  • 散光的晶體諧振器和自動分析。
  • 有限元分析中,ABCD高斯光束傳輸代碼,物理光學傳輸代碼,計算激光穩定性和效率,可在菜單上。

LASCAD -激光腔的分析和設計工具

有限元分析(FEA)

FEA是用於計算 溫度分佈, 變形,以及 應力 或斷裂力學在激光晶體。 熱分析結果用於模擬熱透鏡效應的各種泵的冷卻系統配置和固態激光器(SSL)或二極管泵浦固體激光器(DPSSL)。
有限元分析代碼 LASCAD 是專門為滿足需求的激光模擬。 它使用一個網格算法自動生成一個半非結構網格。這意味著,總站定期和等距網格具有內部結構的晶體是無價的使用有限元分析結果與光碼
預先設計的 有限元分析模型 和可調參數,如尺寸的晶體或材料特性,提供協助工程師與不同激光腔設計概念。 這些模型還包括激光晶體由不同的材料以及摻雜和摻雜部分,包括薄盤激光器,側面泵浦夾心板等,這是當前研究的課題。 非常靈活的泵浦光分佈模擬可以進行通過使用超高斯函數。 要允許吸收的數值模擬泵浦功率密度接口以可靠的和眾所周知的射線追踪碼 ZEMAX軟件 和 TracePro來 可用。
要直觀泵浦光分佈,邊界條件和結果的有限元分析複雜的二維和三維圖形工具基於 OpenGL可用。
有限元分析的結果可與高斯光束傳輸的ABCD的代碼以及與波動光學的代碼。

高斯光束傳輸的ABCD守則

當使用有限元分析結果與高斯模傳輸的ABCD代碼,溫度分佈,再乘以溫度依賴的折射率 擬合拋物線 直角光軸利用有限元網格細分。 以同樣的方式,一個適合端面變形的晶體得到貫徹。 得到的係數,然後用拋物作為輸入高斯光束的ABCD代碼。
進行計算,通過在兩個平原垂直軸,使諧振器建模散光激光腔和晶體。 高斯模式同時顯示地塊為平地,還高階高斯諧振器模式可以顯示。
對於許多配置,端面泵浦棒例如,提供了可靠的結果,這種近似的激光模式。
在案件駐波諧振器一個 穩定圖 的基礎上廣義g參數可以顯示出來。
得到的高斯模的形狀和泵浦光分佈用於計算 激光功率輸出 解激光速率方程的計算方法是在迭代集成晶體體積。
重疊模式和泵激光束 可在任意位置的可視化沿晶軸。

物理光學代碼使用光束傳播Medthod(BPM)的

拋物線近似高斯光束傳播和ABCD代碼並不總是足夠的,但是。 在這些情況下交替有限元分析結果可以作為輸入信號,如物理光學傳輸代碼,這是基於近軸波動方程,並提供全三維仿真的互動傳播的波前一熱,熱變形晶體,無使用拋物線逼近。
物理光學代碼傳播波前在通過晶體小步驟,同時考慮到地方的分配折射率,以及端面變形的晶體,為獲得有限元分析。
基於的原則,福克斯和李一系列往返通過激光諧振腔的計算,最終收斂到一個基本或高階橫向疊加激光模式。
不同的是ABCD的高斯光束傳播代碼的物理光學代碼還考慮到由於孔徑衍射效應,錯位的影響,並獲得指導。
因此,物理光學代碼提供了實際的結果為重要特徵的激光諧振腔像 強度 和 相位剖面 輸出的光束。
然後,這些信息可直接與身體比較後波前測量激光腔的結構。









LASCAD - The Optical Workbench on the PC

The easy-to-use and clearly organized user interface of LASCAD permits intuitive modeling and design of laser cavities. It helps the engineer to understand experimental results without wasting valuable time studying complicated manuals:
  • Optical elements like mirrors, lenses or crystals can be added, combined, positioned, adjusted or removed with a mouse click.
  • Astigmatism of resonator and crystal is automatically analyzed.
  • Finite Element Analysis, ABCD gaussian beam propagation code, physical optics propagation code, computation of laser stability and efficiency are available on the menu.

LASCAD - The Laser Cavity Analysis and Design Tool

Finite Element Analysis (FEA)

FEA is used to compute temperature distribution, deformation, and stress or fracture mechanics in laser crystals. Results of thermal analysis are used for the simulation of thermal lensing effects of a variety of pump configurations and cooling systems in solid-state lasers (SSL) or diode-pumped solid-state lasers (DPSSL).
The FEA code of LASCAD has been specifically developed to meet the demands of laser simulation. It uses an automatic meshing algorithm to generate a semi-unstructured grid. This terminus means that the grid has regular and equidistant structure inside the crystal that is invaluable for use of the FEA results with optical codes
Predesigned FEA models with adjustable parameters, such as dimensions of crystal or material properties, are provided to assist the engineer with different laser cavity design concepts. These models also include laser crystals composed of different materials as well as of doped and undoped sections, including thin disk lasers, side pumped sandwiched slabs etc., which are subject of current research. Very flexible modeling of pump light distributions can be carried through by the use of super-gaussian functions. To allow numerical modeling of the absorbed pump power density interfaces to the reliable and well known ray tracing codes ZEMAX andTracePro are available.
To visualize pump light distribution, boundary conditions, and results of FEA sophisticated 2D and 3D graphical tools based on OpenGL are available.
The results of FEA can be used with an ABCD gaussian beam propagation code as well as with a wave optics code.

ABCD Gaussian Beam Propagation Code

When using the FEA results with the ABCD gaussian mode propagation code, the temperature distribution, multiplied by the temperature dependence of the refractive index is fitted parabolically at right angles to the optical axis using the finite element grid subdivisions. In the same way, a fit of the deformed end faces of the crystal is carried through. The obtained parabolic coefficients are then used as input for the ABCD gaussian beam code.
Computations are carried through in two plains perpendicular to the resonator axis to allow modeling of astigmatism of laser cavity and crystal. Gaussian mode plots are shown simultaneously for both plains, also higher order gaussian resonator modes can be displayed.
For many configurations, end pumped rods for example, this approximation delivers reliable results for the laser mode.
In case of standing-wave resonators a stability diagram based on generalized g-parameters can be shown.
The obtained gaussian mode shape and the pump light distribution are used to compute thelaser power output. Solution of the laser rate equations is computed by iterative integration over the crystal volume.
Overlap of laser modes and pump beam can be visualized at arbitrary positions along the crystal axis.

Physical Optics Code using the Beam Propagation Medthod (BPM)

Parabolic approximation and ABCD gaussian beam propagation code are not always sufficient, however. In these cases FEA results can alternatively be used as input for a physical optics propagation code, which is based on the paraxial wave equations, and provides full 3-D simulation of the interaction of a propagating wavefront with the hot, thermally deformed crystal, without using parabolic approximation.
The physical optics code propagates a wavefront in small steps through the crystal, taking into account the distribution of the local refractive index, as well as the deformed end faces of the crystal, as obtained from FEA.
Based on the principle of Fox and Li, a series of roundtrips through the laser resonator is computed, which finally converges to the fundamental or to a superposition of higher order transversal laser modes.
Different from the ABCD gaussian beam code the physical optics propagation code also takes into account diffraction effects due to apertures, misalignment effects, and gain guiding.
The physical optics code therefore delivers realistic results for important features of a laser resonator like intensity and phase profile of the output beam.
This information may then be compared directly with physical wavefront measurements after the laser cavity is constructed.